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FINITE ELEMENTS IN LINEAR VISCOELASTICITY

J. L, White*
The Boeing Company
Kent, Washington

A stress analysis method is presented which includes the capa-
bility for transient, non homogeneous temperature distribution, The
method is based on the following assumptions: linear viscoelasticity
with hereditary integral form of stress-strain relation; validity of the
reduced time hypothesis; bulk modulus constant intime; homogeneous,
isotropic material, The associated, finite element computer program,
called TAP (Thermoviscoelastic Analysis Program), is aplane strain
formulation with uniform strain and linear temperature distribution
assumed in each element, The element matrices involve superposition
integrals which are approximated numerically for stepping out the
time varying solution, TAP solutions for simple problems are com-
pared with exact and other approximate solutions and with other
approximate methods to more complex problems, Different numerical
procedures are considered, in particular one that avoids integration
back to the time origin thus minimizing computer storage and solution
times,
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SECTION 1

INTRODUCTION

This paper was motivated by problems of solid propellant grain stress analysis that arise
under transient thermal environment, Atpresent, most stress analyses of rocket grains use an
elastic analysis which by varioustechniquesis madeto approximate the viscoelastic character

of the solid propellant response,

One such technique uses elastic moduli equal tothe corresponding viscoelastic properties
at the desired time and temperature, This method, commonly referred to as quasi-elastic,
essentially ignores the entire past history of loading and environment and may be a gross

approximation to the true response,

A generally more preferable technique is based on the correspondence principle, or
elastic-viscoelastic analogy, first elucidated by Alfrey (Reference 1) which permits cone, using
an elastic solution, to obtain the corresponding iscoelastic solution to the same geometric
problem with equivalent time-step boundary conditions, The procedure is exact if a closed
form elastic solution exists and ifthe inverse of the Laplace transformed viscoelastic solution
can be obtained exactly, For use with numerical solutions, Schapery, (Reference 2) has shown
how the method is applied as an approximate inverse Laplace transform technique, The
technique is appropriate where the required correspondence exists between the elastic and

transformed viscoelastic problem,

As pointed out by others, Morland and Lee (Reference 3), the correspondence principle fails
to hold for nonhomogeneous, transient temperature distribution, although still valid for either
homogeneous, transient temperature or nonhomogeneous, steady state temperatures, The
difficulty involves one of two things, depending on whether the problem is formulated in real
time or shifted time, Interms of real time, the stress-strain law is not a convolution integral;
if the shifted time is used, the transformed viscoelastic equilibrium and strain displacement

equations are not equivalent to the corresponding elastic equations,

To circumvent these problems, Hilton and Russell (Reference 4) impose conditions of
constant temperature over time increments and apply the correspondence principle on an
incremental basis, This method has been used successfully by Valanis and Lianis (Reference 5)

although its application becomes somewhat involved,
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Regardless of what indirect means are used to obtain a solution to the thermoviscoelastic
problem:, one is still faced with asgessing the accuracy of the solution, given a particular
viscoelastic material, history of load and environment, and solution time realm, Therefore a
need exists for a direct method of attack on the problem - one inwhich there is confidence of
an accurate solution if a fine enough time grid is used and general enough to include two

dimensional, irregular geometries and arbitrary material properties,

A first step in this direction wastaken by Taylor and Chang (Reference 6) who formulated
the one dimensional plane strain circular cylinder problem by a finite element procedure,
then demonstrated its application to steady state temperature fields. As they point out, com-~
puter time can quickly become excessive for large problems, which is due partly by the need
for excessive out-of-core storage. The solution procedure involves generation and soclution of
a new set of stiffness equations foreachtime step. The solutions are saved for all time steps
and used to generate new load columns which involve summation back to the time origin, thus

requiring a great amount of storage for long-time realms and large numbers of freedoms,

The present paper is a two dimensional, plane strain, finite element formulation of the
thermoviscoelastic problem, in which steps are takentoovercome some of the aforementioned
difficulties. It is a direct approach, not relying on equivalent elastic solutions or transform
methods,

The assumption of time-constant bulk modulus is made (an apparent good assumption for
some solid propellant materials for example, Reference 7) which leads to a particularly simple
time-varying form of the stiffness matrix and minimizes regeneration of matrices at each
time step. Also, it is shown how the history or memory effects can be formulated so that the
memory load (a generalized load which accounts for the history of deformation) may be ex-
pressed as a recurrence relation from one time step to the next rather than requiring sum-

mation to the time origin,
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SECTION II

ONE DIMENSIONAL PROTOTYPE EQUATION

Certain aspects of the general equations inthe next section can be illustrated in one dimen-
sion. We therefore consider briefly the numerical inversion of the uniaxial, viscoelastic

stress-strain relation,

t

o) = 0 e()- [ SELZLL
0'*

€ (t') df ()

where o (t} and € (1) are uniaxial stress and strain, E(t) is the uniaxial stress relaxation
modulus defined as the stress response to a unit step strain, In Equation 1 explicit allowance
for an initial step strain has been made, When o (t) is prescribed and E(t) is given as a
tabulated numerical function, it is desired to find a numerical solution, € (t}). When o(t) is
a unit step, the solution € (1) is the uniaxial creep compliance, D(t), The numerical form of

Equation 1 using a trapezoidal approximation is

ikl el ) +elt))
o (1, )=E(0)elt, ) - EI - [ec,-1,, g0, -1)] (2)
or rearranging,
E(O)+ E(t -1, _ ) ett,_))
K k—I . - -
[ _ lewr o+ — [e@ -t -1 ) ]
izk—2
+ i [E -ty 1 -E1] s e tr) v (3)
izl
elt. ) +elt)
k=1,2,3 - t, =0 e*“i) . i+l i

2

from which is determined successively € (tk), The **memory*’ term, V(tk » which involves
the past solutions, is known. Lee and Rogers {Reference B) have discussed convergence using

the trapezoidal approximation,

A simpler approximation is to assume E(t) constant over each time step, a staircase
function falling below the exact E(t), The advantage of this approximation is that an upper value
for the time varying solution (creep compliance) is obtained, which can be demonstirated
analytically. The irapezoidal approximation on the other hand appears fo give a value below
the exact solution. This information could possibly be used to bracket the solution to certain

types of problems,
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In order to gain some insight into the numerical requirements for differing viscoelastic
materials, two representative relaxation functions were inverted, onea very simple, standard
linear solid representation and the other a more complex, broad band representation, The
results are shown in Figures 1 and 2. The inversion for the simpler material converged
rapidly but the reflected curve 1/E (t) deviated greatly from D{t). The more complex represen-
tation, for which a closed form exact creep compliance is unobtainable, showed much slower
convergence but an apparently reasonable representationofD(t) by 1/E (t). We might therefore

expect quasi-elastic solutions to be acceptable engineering approximation in some cases,

Ordinarily the summation in Equation 2 must be carried out back to the time origin re-
quiring that every previous solution be saved. Inthe multi-dimensional case considered in the
next section, vector solutions must be saved and summed at each time step so that storage
requirements and perhaps computer running time can become critical for large t, There are

ways to avoid this problem, none of which in general appear to be completely satisfactory,

One way is to truncate the summationfor{ << k when the terms [E(tk-ti) - E(tk~ti_2)]
€ (ti-l) become negligibly small since E(t) is a monotonically decreasing function. In the
absence of temperature effects [E(tk—ti) - E(tk_ti-z)] generally decreases rapidly; how-
ever, a past history of relatively large deformation could offset this so that care must be
exercised, Further, the effect of low temperature is to retard the rate of decrease of E(t).

Another way of avoiding the storage requirement is to replace the summation by a re-
currence relation. Zak (Reference 9) has shownhowthis can be done by expressing the relaxa-

tion modulus as a Prony series as follows:

j=qa -+
E(t)sA, + X Ajej (4)
i
The Expression 2 then becomes
elt, Helt _)
k k-1
o (t,) <E(O)elt, ) - 5 (et -t -1 ]
k-2 q ‘(fk‘fi+|) ‘(fk‘fi )\
— * Tj Tj
T e (| af{e T —e ] (5)

]
—
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Interchanging the summation, the last term is written as

q k-2 1k 'ir’." —:-'— q
Y A e (e T —el )&ty : ¥ Aa,, (6)
b ie =1 !
where
-'_k - Tk-2 e ! k-3 _-fk"l
a = @ T {e T -e le* (t ite b e i
bk k= iz
Yty iL
e 5 -eTj)e™it) (7
or
Sty -ty ) -“k-l_tk-z)
T Tj *
- ] [ - ]
ai,k e (1—e e “k—zH'aj,k—a (8)

The solution of Equation 1 may now be written

| E(0)-EQt, -t ) ( | q ]
t + t + . Q.
E(O)+E(, -1, ) [‘T( - 2 k- ,z. Al % « (9)

e(tk)=

By using Zak’s method we have exchanged the summation over the time realm for a sum-
mation over the Prony series terms plus a recurrence relation. Only the immediately past
two solutions are now required to be saved to account for memory effects, The adequacy of

Zak's method depends on how accurately the Prony series represents the relaxation modulus,
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SECTION III
FINITE ELEMENT DERIVATIONS
STRESS-STRAIN RELATIONS

The thermoviscoelasticity theory used in the finite element derivations has been pre-
sented elsewhere (Reference 10) and only the essentials are given here,

Assuming constant bulk modulus, K, and constant coefficient of thermal expansion, @ , the

thermoviscoelastic constitutive relations may be written, using cartesian tensor notation, as

(X,t): 26(0) €. (X.t) sz 06 (€8 ‘1dt’
[+ 2. R = - - —
Y 0 e” , ), e eij (X .t )dt
' [
_2 2 96{&-&) "ot
+3i}[K 3<5(o)]emm(m:,r)+§3ii o f T e (X ay
o"‘
-8, 3ak([T(X1)-T (X,0] (10)

where allowance for an initial response has been made explicit, G(t) is the shear relaxation
modulus given for an arbitrary ‘‘material reference temperature’’, To, The notation X
denotes spatial dependence, The shifted time § is related to real timet through the relation

dt’

$egxn: o AT[T(x,t')]

(1)

where T(X ,t) is temperature, while Tl( X .0} = structural reference temperature, an initial
steady-state temperature distribution with associated time constant stress and displacement
states. The form to be used here for the shift function AT(T) makes use of the so-called WLF
equation (Reference 11)

lo ArlT) = - C,{T-T) | h(T) (12
Yo AT T €, ~(T-To)
or-
X
[ = |oh[T( ’”] {(13)

At [T(x,n]
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where C1 and 02 are constants for aparticular material, Upon the restriction to plane strain,
Equation 10 becomes in matrix notation

(X t): L €(X,t) +C €(X,t) ~-3Ka I @(X,t) {14)
where
' -4 2 o[ € (X, 1)
L e (X,t) '3 f aG,(a'f’ 2-4 0| ¢ (X, t')] o (15)
v O 0o 0 -3|| y, (X,t)
K+~%—G(o) K-—g—G(o) 0
c: |k-£ 6o K+% 60) 0
o] 0 Glo)

@(x,n:[T(X, 1) -T (X,0)]

One should be reminded thatthe law Equation10 is nonlinear in temperature, thus thermal

stress solutions cannot be superimposed, Since temperatures areprescribed this nonlinearity
does not create any special problem,

ELEMENTAL EQUATIONS

Derivation of the elemental equations proceeds from the principle of virtual displace-
ments in the form

t

2
f f8¢T(X,H o (X, t) dv—f Sul (X,1) F, (X,1)aV
; Vol Vol

'-f SUT (s, t) FS(S,H dS) dt=0 (18}
St
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where
F v( X ,t) = prescribed body force vector

F S( $ ,t) = prescribed surface tractions on portion of boundary, ST'

_ Su(x,y.t) _ . : .
Su(X .t = [ Svix.y.t) ] = x and y directed virtual displacements

$ denotes the boundary position vector.

Linear displacements are assumed in each element, This leads to constant strains in each
element giving the familiar expression

i Uu(f) ]
€x(t) Ybe © Yea 0 ~Ypa 0 vg (1)
S - -
(1) | " 2a 0 *be 0 *ca 0 *ba ub:t:
- - - t

yxy(t) *be "be *ca Yea *ba Yo vb“)

Ue
\fc(f)-J

or
€(t) = ¢ a(r) (17)

where referring to Figure 3
Yoe T Vb " Yo' Xpo = Xp ~ X OtC
A = element area

Linear distribution of temperature in each element is assumed, giving

B, (1)
@X,1)=[1xy|N|Oyr1) (18)
| (t)
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Figure 4, Geometry of Problem F-1, T-1
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where again referring to Figure 3

| *pYe TXc Yp Xe Yo TXa Y¢ Xa ¥p “Xp Yo
rye Ype Yeq “Ybo (19)
“Xpe “Xea *ba

@a(t), @b(t). ®c(t) = nodal temperature changes,

The shifted time is calculated using an average nodal temperature in each element

o [Tm(t')]dt‘ 20

§=5tn=f'

[\
where

T(Xg 1)HT X, 1)+ TIX, t)
Tm(t)=( )= average nodal temperature for

3 an element.

Insertion of Equations 14, 17, and 18 into Equation 16 results in

to

[ (3ar " ([ L ex,t)+ cdan

t, Vol
-3kal [t xy] N @ (1) av =) 8q' (1) F(1)) dt=0 (1)

where the virtual work of body and external loads has been replaced by the virtual work of a
statically equivalent set of nodal forces, Upon integration throughout the element volume, and

assuming the Sqi(t) are independent,

¢T L € (X,t) + ¢T cC ¢ q(n)
where -3ka¢T I [l Xm ym] N ® = F(t) (22)
) ) xu+xb+xc y s ya+yb+yc
m 3 m- 3

The force vector, F (t), is to be interpreted as the forces per unit element thickness,
The product 3K ¢ Tz [1 X Ym] N is given the designation D . Then

ybc
" Xpe

3Ka Yea
R [PQR] (23)

“Ypa
[ xim.
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where

Po=xp¥e =% Y% T *m Yoe ~ Ym *be
Q =%x.¥ “%g¥c T*n Y%a ~Ym*co

R=x3Yp~ *p¥a™ *m Yba ¥ Ym*ba
; _ T ; :
Letting Kl = ¢ c ¢ , the resulting expression

¢ L €(X,nN+Kaqit) —DO(1)= F(t) (24)

looks familiar except for the first term, which requires time integration from t'=0tot' =t,

Thisterm (see the one dimensional example in the previous section) is approximated

numerically as follows for the kth time point,

*.
. S [e 2 07 ke € (i)
dLex11:¢TL |24 0 (% Lot -¢ 1-61€ €] € (1)
O O -3 iz k i+l k " x
yxy(t;)
| (e, (1, -1)
'I-E-[G(O)—G(fk'fk_l)] eyt -1
)’y“k't)
—Ex (1k)
+Lletor-6tg,-£, 1] |ey 1 ) (25)
_yxy(tk)

where the average strain

€. (t; Y+ e (1))
l-“'): X it X I

x W > , 8fc.

€

All of the strains in Equation 25 are known except [ex(tk) €y(t) yxy(tk)]. Using Fquation

17, we write

' Lex, )=V )+ [eto)-6ig, -€ )] K, auy (26)
where
k-2
vin ) = -m( 3 [etg, -g,, -6t €] et
i=\
i
+ Sletor-c e, -&,_ e, ) (27
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K, (1) == ¢ [g -4 g] ¢
and
Tf[-4 2 o
M- L 2 -4 0
3¢ {0 0 -3]

The governing incremental stiffness equations for an element are now

(k, +[st01—6t&, -6, ] K, )at, ) =FU )+ MO+ V()

{Constant) (Constant) {Mechan- (Thermal (Memory
ical Load) Load)
Load

(28)

The element stresses are written for the element centroid since temperature is permitted to

vary linearly in each element,

oy (1) € (1) | @ (ty )
oy i) | = 8 + 8, | e (1) +8; | B,(1,)
Ty (i) Yxytty? ®, (1)
where
-4 2 0| K-2
L - _ _ _ *
S, : 3[3 49 J(;-. Lo g, ¢, 0 -og, €]
1 U
r= [G(o) -6 (&, -&, )] et Nt MV
| {-4 2 o][ ]
S, :—| 2 -4 Of/6loy—-6(&{ -& 1| +C
2 6 0 0 -3 k K-t

503

{29)



AFFDL-TR-68-150

Using the development in the preceding section, the specialization of Equations 28 and 29 to

Zak's method is accomplished by

'(Ek_ek—ll
S Y )—G(co)qu o e, )
Vi) = M(3 A e+ [sto z e .
J=! E
-{ Ek_ik—l) - ‘fk—l"Ek-g)
ajik = e rj {(l"e Tj )‘*(1k‘2-] + aj’k_‘] {30)
0
aj,l =ﬂj'2'—[8]
-£, £,
@, e (¢ T -1)e"o

One potential advantage of Equation 28 should be noted. Since K, and K o are constant
elemental matrices, for isothermal conditions and equal time increments, the merged stiffness
matrix will remain constant from step tostep, And for isothermal conditions and unequal time
steps, a merged K 1 andmerged K g can be stored for all time, thus eliminating regeneration
and merging of these elemental matrices at each time point, Similar advantages may be

possible for transient, homogeneous temperature distribution,
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SECTION IV

THERMOVISCOELASTIC ANALYSIS PROGRAM (TAP) COMPUTER CODE

The TAP code was written as a pilot program to study the feasibility of our approach,
Originally, out-of-core storage was provided for so that an unlimited number of solution time
steps could be used. The need for frequent program changes coupled with excessive turn-
around time made it advisable to write an in-core version which is presently the operable
program, Coding is in FORTRAN IV for the UNIVAC 1108 computer, Zak’s method is included
as an option, although none of the results presented in the figures were obtained by this method,

As an indication of the program capacity and efficiency, the problem shown in Figure 10 for
91 time points took 9 minutes of computertime. Approximately 5 minutes of this time was spent
in generating memory loads whereas using a 10-coefficient, Prony series with Zak's method,
approximately one minute is necessary for generating memory loads, For this problem,
approximately 100 time points could be normally used before exceeding core limitations where-

as Zak’s method, the number of time points is essentially unrestricted,
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SECTION V

SOLUTION OF PROBLEMS

ELEMENTARY PROBLEMS

In order to evaluate the basic operation and accuracy of the TAP program, a problem with
simple geometry was chosen for which exact analytical solutions could be obtained, The
problem geometry is illustrated in Figure4, Thematerial properties chosen do not correspond

to any particular material,

The first loading (F-1) considered was a unit step load of 10 on the right hand face, The

exact solution is easily found to be

- -2.0588
u(x 1) = 210 *[70.3494 1 (1104942 ¢ '
-69.3000 ¢~ 02301]

The TAP results using four elements are shown in Figure 5 along with the corresponding
finite element solutions by Schapery’s direct method and the quasi-elastic method, The
plotted results are a valid comparison between the three methods only to the degree that the
material properties represent a realistic viscoelastic material, A transform parameter-
time correspondence factor of p = 2—1was used in the Schapery method, In view of the form of

the relaxation modulus curve in Figure 1 the quasi-elastic result was not unexpected,

Next considered was a temperature loading (T-1),

TOx, 1) =H{IB+6x)((-.5e " ),

with the structural and material reference temperatures taken as zero, Following essentially

the procedure in Reference 10 the exact solution is:

uix,t)

"R '-2357f‘[“*’,f )+ 339:{‘2-0588[!0“[”*" 1] g0
o]

f’e(z.osssf |o“[T("" '")]dr")_

) T(x’,f’)-lo"[T("""’]df']dx (31)
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The four element TAP solution (Figure 6), using 0,1 time intervals, essentially coincided with
the exact solution, The quasi-elastic, finite element solution was nearly exact also which is
not surprising in view of the different type of loading and loading rate in problem T-2,

COMPLEX PROBLEMS

Two problems were chosen representing practical, solid rocket grain configurations,
Figures 7 and 8. The elemental breakdowns are obviously not fine enough for a realistic

stress analysis, but are sufficient for evaluating our methods.

The first problem (F-2) is an end burning grain, partially bonded circumferentially,
Figure 7 shows a one-sixth segment of the cross section, perpendicular to the motor axis,
The loading represents a 70°F, firing condition for which a step pressure and step radial
displacement is applied over the unbonded and bonded portions respectively, Using experimental
data in Figure 8, a shear modulus, G(t) = 1/3 E(t), was assumed, Equal increments of log
time, A log 10t = 1, were used, Computer running time was approximately 2,5 minutes,
Each of the quasi-elastic solutions required 20 seconds, The TAP results, compared with
quasi-elastic solutions in figure 7 demonstrate the inadequacy of the quasi-elastic method for
this particular problem,

The second problem was a slotted grain configuration, Figure 10 shows a one-quarter
segment of the cross section perpendicular to the motor axis, Assumptions include a rigid
outer boundary, a uniform structural reference temperature Tl = 70°F, and a shear relaxation
modulus shown in Figure 2. Time-temperature shift data from Figure 9 determined ¢ 1 and

C o A temperature (T-2), representing cooling of the outer surface from 70°F to -70°F was

first input as follows
3
T(r,t) =70 - 70 (1 - Cos 7T /5t)(r/8) r = radial location

the results for which are shown in Figure 10. The quasi-elastic solution, a commonly used
method, agrees reasonably well for displacements but deviates greatly from the TAP solution
for stress. The TAP results appear to converge with progressively finer time increments as
indicated by the tabulated solutions in Figure 10,

A slower rate of cooling was considered finally as follows:

T(r,t) = 70 - 70 (1 - Cos 7 /60t)(r/8)"

It was anticipated that the quasi-elastic stress solution would be closer to the TAP results,

Such was not the case as shown in Figure 11,
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SECTION VI

CONCLUSIONS

The two primary questions under study are: Within the assumptions of linear, quasi-
static viscoelasticity, what is the adequacy of the presently used, approximate viscoelastic
analysis methods? Is the direct formulation here using a finite element procedure a practical

approach to viscoelastic stress analysis?

To definitively answer the first question, considerably more study is required, In
particular, thermal cycling problems and mechanical loading under thermal environment should
be studied for carefully chosen geometric configurations, Obviously, the question must be
rephrased if real materials exhibit significant non-linearities, as appears to be the case for
composite solid propellants for example, ‘

The answer to the second question appearstobe in the affirmative, In regard to computer
time requirements, problem T-2 for 54 time points was extrapolated to the case of 500 un-
constrained freedoms (versus 60 in T-2), Based onthe TAP code, a rough estimate of 2 hours
computer time would be required--using an out-of-core program of course, Using Zak's
method in an in-core program, with 10 Prony coefficients, approximately 45 minutes would
be required. For 91 time points the corresponding figures are 3 1/2 hours and with Zak’s
method, 80 minutes, Significant improvement could be expected with a more efficient code.

For short solution time realms, as in problem F-2, computer time would not generally

be prohibitive for realistic, elemental breakdowns. Of significance inthis case is the practicality
of using directly, measured relaxation data rather than resorting to additional approximations,
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